科		CAE	科目	の種別	工業(専門機械)	
担当都	数 員 名	高橋修・いわてDEセンター講師	所 属	(1 - 1)	工業技術科(機械コース)	
開講学期	/単位数	女 2年前期 / 4単位	科目の 分類	講義・演	習 標準授業 60時間	
授業の目標				授	業 計 画	
3次元CADソフト (SolidWorks) のシミュレーション機能、モーション機能等を活用し、機械の構造や機構について視覚的に捉えとともに、設計能力を養う。 3次元CADを用いた有限要素法による構造解析と機構解析の知識習得を目標とする。			第第第第第第第第第 1 2 3 4 4 5 6 7 8 週週週週週週週週週週	第2週相対比較、剛性の検証第3週強度の検証第4週剛体運動、結合要素、大変位第5週固有値解析第6週最適化天7週モーション解析の概要、基本操作他		
授業の概要			第9週第10週	FEM エク	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
SolidWorks のシミュレーションやモーションの解析機能を使用する。テキストの演習問題等を解きながら活用方法や知識の習得を行う。 講義は、いわてデジタル育成センターの講師の指導により4月から5月の期間で集中的に実施する。 授業後半では、各自の修了研究のテーマにおける実例に応用する。			第 11 週 第 12 週 第 13 週 第 15 週	射出成型概要、基本操作他、復習 学習内容の活用(修了研究テーマなど) " 技術指導のまとめ (上記活用含むレポート作成) 【実技試験】		
教科書、	教材等	自作テキスト、新版 図説機械用	語事典(多	 美教出版)		
即心。	.・意欲	CAEの概要を理解し、その利用目的や活用分野がわかる。				
	・態度 (25%)	応力やひずみの概念と、シミュレーション結果とを比較できる。				
(2		モーションによる機構解析を理解できる。				
評 (25%	★ ・ 坐川除斤	3 Dデータを活用し解析作業を行うことができる。				
	·表現 (2.5%)	シミュレーションやモーションの操作について、意味を理解して正しい操作ができる。				
		演習問題を解くことができる。				
	技能 (25%)	シミュレーションにより、静解析を操作できる。				
進		モーションの機構解析の操作ができる。				
		CAEの使用方法を身につけることができる。				
	知識・理解	CAEに必要な知識を理解できる。				
知言		機構解析の知識を理解できる。				
知語	以上 力十		材料力学の知識を理解できる。			
	25%)					